Notes on totally categorical theories

نویسنده

  • Martin Ziegler
چکیده

Cherlin, Harrington and Lachlan’s paper on ω0-categorical, ω0-stable theories ([CHL]) was the starting point of geometrical stability theory. The progress made since then allows us better to understand what they did in modern terms (see [PI]) and also to push the description of totally categorical theories further, (see [HR1, AZ1, AZ2]). The first two sections of what follows give an exposition of the results of [CHL]. Then I explain how a totally categorical theory can be decomposed by a sequence of covers and in the last section I discuss the problem how covers can look like. I thank the parisian stabilists for their invation to lecture on these matters, and also for their help during the talks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finitely axiomatizable strongly minimal groups

We show that if G is a strongly minimal finitely axiomatizable group, the division ring of quasi-endomorphisms of G must be an infinite finitely presented ring. Questions about finite axiomatizability of first order theories are nearly as old as model theory itself and seem at first glance to have a fairly syntactical flavor. But it was in order to show that totally categorical theories cannot ...

متن کامل

Quasi finitely axiomatizable totally categorical theories

As was shown in [2], totally categorical structures (i.e. which are categorical in all powers) are not finitely axiomatizable. On the other hand, the most simple totally categorical structures: infinite sets, infinite projective or affine geometries over a finite field, are quasi finitely axiomatizable (i.e. axiomatized by a finite number of axioms and the schema of infinity, we will use the ab...

متن کامل

Freyd categories are Enriched Lawvere Theories

Lawvere theories provide a categorical formulation of the algebraic theories from universal algebra. Freyd categories are categorical models of first-order effectful programming languages. The notion of sound limit doctrine has been used to classify accessible categories. We provide a definition of Lawvere theory that is enriched in a closed category that is locally presentable with respect to ...

متن کامل

Polynomial Invariants of Graphs and Totally Categorical Theories

In the analysis of the structure of totally categorical first order theories, the second author showed that certain combinatorial counting functions play an important role. Those functions are invariants of the structures and are always polynomials in one or many variables, depending on the number of independent dimensions of the theory in question. The first author introduced the notion of gra...

متن کامل

The Structure of Models of Uncountably Categorical Theories

The natural notion of categoricity, as it was discovered in the 1930's, is degenerate for first order languages, since only a finite structure can be described up to isomorphism by its first order theory. This has led to a new notion of categoricity. A theory is said to be categorical in a power if it has a model of this power which is unique up to isomorphism. Morley has proved, answering the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1991